Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent ; 131: 104454, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781100

RESUMO

OBJECTIVES: To perform a differential analysis of the dentin soluble proteomic and assess the effects of tissue health state and protocol for protein extraction. We hypothesized the dentin soluble proteomic varies according to the tissue physiopathological state (intact vs. caries-affected) and protocol used to extract its proteins. METHODS: Dentin from freshly extracted non-carious and carious teeth were randomly assigned for protein extraction using either guanidine-HCl/ethylenediaminetetraacetic acid (EDTA) or acetic acid. Protein extracts from intact and caries-affected dentin were processed and digested with trypsin for shotgun label-free proteomic analysis (nLC-ESI-MS/MS). Peptides identification was performed on a nanoACQUITY UPLC-Xevo Q-Tof MS system. Peptides identified with scores of confidence greater than 95% were included in the quantitative statistical analysis embedded in the PLGS software. Differences between experimental conditions were calculated using Student test-t with significance pre-set at α=0.05. RESULTS: A total of 158 human proteins were identified. Approximately one-sixth of proteins (24/158) were present in at least two different extracts. Conversely, the greatest number of proteins (134/158) was identified uniquely in only one of the extracts. Overall, a larger number of soluble proteins was retrieved from caries-affected than intact dentin (86/158). Likewise, a greater number of proteins was extracted by the guanidine-HCl/EDTA (106/158) in comparison to acetic acid protocol. Several proteins detected in dentin extracts, mainly those from caries-affected teeth, are biological and/or metabolically involved with tissue turnover/remodeling. CONCLUSION: The identity/abundance of soluble proteins retrieved from and remained in dentin noticeably depend on this tissue physiopathological state and protocol used to remove its minerals. CLINICAL SIGNIFICANCE: The present findings brought new insight into the proteomic phenotype of human dentin and may provide targets for the development of novel caries disease-prevention therapies.


Assuntos
Cárie Dentária , Dentina , Humanos , Cárie Dentária/metabolismo , Ácido Edético/farmacologia , Guanidinas/metabolismo , Guanidinas/farmacologia , Proteínas/metabolismo , Proteínas/farmacologia , Proteômica , Espectrometria de Massas em Tandem
2.
Caries Res ; 52(1-2): 113-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298447

RESUMO

The aim of this study was to evaluate the effect of pH on the activation of matrix metalloproteinases (MMPs) of human coronal (CD) and radicular dentin (RD). CD and RD were pulverized to powder, and proteins were extracted with 1% phosphoric acid. The extracted proteins and the demineralized powder were separately incubated in the following solutions: 4-aminophenylmercuric acetate (control) or a buffer solution at different pHs (2.5, 4.5, 5.0, 6.0, and 7.0). After incubation, proteins were separated by electrophoresis to measure MMP activities by zymography. To assess the solubilized dentin collagen, the demineralized dentin powder was sustained in incubation buffer, and the amount of hydroxyproline (HYP) released was measured. Zymography revealed MMP-2 gelatinolytic activities for CD and RD in all experimental groups. For both substrates, the lowest pH solutions (2.5, 4.5, and 5.0) yielded higher gelatinolytic activity than those obtained by the highest pH solutions (6.0 and 7.0). For HYP analysis, no detectable absorbance values were observed for pHs of 2.5 and 4.5. The amount of HYP was higher for pH 7.0 than those of all other groups (p < 0.05), except for pH 6.0. No statistical differences were found between pHs 6.0 and 5.0 and control (p > 0.05). The MMP-2 enzyme from human CD and RD is dynamically influenced by pH: at low pH, the extracted enzyme activates this latent form, whereas collagen degradation by the matrix-bound enzyme is only observed when pHs are close to neutral.


Assuntos
Dentina/enzimologia , Metaloproteases/metabolismo , Adolescente , Adulto , Dentina/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Concentração de Íons de Hidrogênio , Hidroxiprolina/metabolismo , Metaloproteinase 2 da Matriz/isolamento & purificação , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteases/isolamento & purificação , Adulto Jovem
3.
Eur J Oral Sci ; 125(2): 168-172, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213935

RESUMO

Degradation of the hybrid layer created in dentin by dentin adhesives is caused by enzyme activities present within the dentin matrix that destroy unprotected collagen fibrils. The aim of the present study was to evaluate the effect of a one-step self-etch adhesive system on dentinal matrix metalloproteinases 2 and 4 (MMP-2 and MMP-9, respectively) using in situ zymography and an enzymatic activity assay. The null hypothesis tested was that there are no differences in the activities of dentinal MMPs before and after treatment with a one-step adhesive system. The MMP-2 and MMP-9 activities in dentin treated with the one-step adhesive, Adper Easy Bond, were quantified using an enzymatic activity assay system. The MMP activities within the hybrid layer created by the one-step adhesive tested were also evaluated using in situ zymography. The enzymatic assay revealed an increase in MMP-2 and MMP-9 activities after treatment with adhesive. In situ zymography indicated that gelatinolytic activity is present within the hybrid layer created with the one-step self-etch adhesive. The host-derived gelatinases were localized within the hybrid layer and remained active after the bonding procedure. It is concluded that the one-step self-etch adhesive investigated activates endogenous MMP-2 and MMP-9 with the dentin matrix, which may cause collagen degradation over time.


Assuntos
Resinas Compostas/química , Adesivos Dentinários/química , Dentina/efeitos dos fármacos , Dentina/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Humanos , Técnicas In Vitro , Dente Serotino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...